On the Aggregation of Argumentation Frameworks

Jérôme Delobelle

Sébastien Konieczny and Srdjan Vesic (CRIL)

February 2015

Definition (Dun95)

An argumentation framework is a pair AF = $\langle A,R\rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ is an attack relation

$$(a) \rightarrow (b) \rightarrow (c) \rightarrow (e) \rightarrow (e)$$

Several possible semantics σ :

- Grounded : $\mathcal{E}_{gr}(AF) = \{\{a\}\}$
- Preferred : $\mathcal{E}_{pref}(AF) = \{\{a,c\},\{a,d\}\}$
- Stable : $\mathcal{E}_{sta}(AF) = \{\{a,d\}\}$
- Complete : $\mathcal{E}_{comp}(AF) = \{\{a,d\},\{a,c\},\{a\}\}$

Which arguments can be inferred from a set of extensions? $\mathcal{E}_{pref}(\mathsf{AF}) = \{\{\mathsf{a},\mathsf{c}\},\{\mathsf{a},\mathsf{d}\}\}$

$$(a) \rightarrow (b) \rightarrow (c) \rightarrow (d) \rightarrow (e) \rightarrow (e)$$

Two types of inference relations :

- Skeptical inference selects the arguments that appear in all the extensions : sapref (AF) = {a}
- Credulous inference selects the arguments that appear in at least one extension : capref(AF) = {a,c,d}

On the Aggregation of Argumentation Frameworks

Aggregation of argumentation frameworks

Two different approachs : properties and operators

Properties :

 P. Dunne, P. Marquis, and M. Wooldridge, Argument aggregation : Basic axioms and complexity results (COMMA'12), 2012

Aggregation methods :

- S. Coste-Marquis, C. Devred, S. Konieczny, MC. Lagasquie-Schiex, and P. Marquis, On the merging of Dung's argumentation systems, Artificial Intelligence, 2007
- S. Coste-Marquis, S. Konieczny, P. Marquis, and M. A. Ouali, Selecting extensions in weighted argumentation frameworks (COMMA'12), 2012
- A. Tohmé, G. Bodanza and G. Simari, Aggregation of Attack Relations : A Social-Choice Theoretical Analysis of Defeasibility Criteria, (FoIKS'08), 2008

Aim : Determine which properties are satisfied by the existing operators

Properties of aggregation function

Merging : Aggregating several AF in order to define an AF representing the social position

 $\mathbb{AF}^n \to \mathbb{AF}$

Properties proposed by [DMW12] for the aggregation of AF :

- Anonymity (ANON) : The operator produces the same AF for all permutations of the same input
- Non-triviality (σ-SNT, σ-WNT) : The result has <u>at least</u> one non-empty extension
- Decisiveness (σ-SD, σ-WD) : The result has exactly one non-empty extension
- Majority (MAJ-A, σ-MAJ, ca_σ-MAJ, sa_σ-MAJ) : An entity that appears in a strict majority of AF, should be appear in the social outcome

Properties of aggregation function

- Unanimity (UA, σ-U, ca_σ-U, sa_σ-U) : An entity that appears in <u>all</u> the AF, should be appear in the social outcome
- Closure (CLO, AC, σ-C, ca_σ-C, sa_σ-C) : The aggregation function must not invent some entity which does not exist in the input

Other interesting property [TBS08] :

 Positive responsiveness (PR) : Increasing the number of agents that have an attack, should not decrease the chance for that attack to appear in the social outcome

Additional properties :

Identity (A-ID, σ-ID, ca_σ-ID, sa_σ-ID) : If all the AFs in the input coincide, merging result should be identical too

Results

		[CDKLM07] [TBS08]					
Properties		Δ_{de}^{Σ}	∆ ^{leximax} de	QV	FUS _{All}	FUS _{All-NT}	FUS _{Maj-NT}
Anonymity	ANON	~	√	×	~	√	√
σ -strongly non-trivial	σ -SNT	×	×	×	×	√	√
σ -weakly non-trivial	σ -WNT	×	×	√ ^{gr}	×	√	√
σ -strongly décisive	σ-SD	×	×	×	×	×	×
σ -weakly décisive	σ-WD	×	×	√ ^{gr}	×	×	×
Unanimous attack	UA	\checkmark	√	×	-	-	-
σ -Unanimity	<i>σ</i> -U	×	×	×	×	×	×
ca_{σ} -Unanimity	ca _σ -U	×	×	×	×	×	×
sa_{σ} -Unanimity	sa _σ -U	×	×	×	×	×	×
Majority attack	MAJ-A	\checkmark	×	×	-	-	-
σ -Majority	σ -MAJ	×	×	×	×	×	×
<i>ca</i> _σ -Majority	ca_{σ} -MAJ	×	×	×	×	×	×
sa_{σ} -Majority	sa_{σ} -MAJ	×	×	×	×	×	×
Closure	CLO	×	×	×	-	-	-
Attack Closure	AC	\checkmark	\checkmark	\checkmark	-	-	-
σ -closure	<i>σ</i> -C	×	×	×	×	×	×
<i>ca</i> _σ -closure	ca _σ -C	×	×	×	×	×	×
sa_{σ} -closure	sa _o -C	×	×	×	×	×	×
Identity attack	A-ID	\checkmark	~	×	-	-	-
σ -Identity	σ-ID	\checkmark	 ✓ 	×	√ ^{gr}	×	×
ca_{σ} -Identity	ca _σ -ID	\checkmark	√	×	√ ^{gr}	×	×
sa_{σ} -Identity	sa _σ -ID	\checkmark	 ✓ 	×	√ ^{gr}	×	×
Positive responsiveness	PR	\checkmark	\checkmark	\checkmark	-	-	-

 \checkmark^σ means that the property is satisfied for the semantic σ

On the Aggregation of Argumentation Frameworks

Criticism of Unanimity, Majority and Closure

Unanimity (all the agents) :

b attacks a

Majority (two of the three agents) :

- c does not attack b
- d does not attack b
- e does not attack b

On the Aggregation of Argumentation Frameworks

Criticism of Unanimity, Majority and Closure

On the Aggregation of Argumentation Frameworks

8/12

Criticism of Unanimity, Majority and Closure

 $\mathcal{E}_{pref}(AF_1) = \mathcal{E}_{pref}(AF_2) = \mathcal{E}_{pref}(AF_3) = \{\{a, c, d, e\}\} \qquad \qquad \mathcal{E}_{pref}(\mathsf{WAF}) = \{\{b, c, d, e\}\}$

Counterexample which demonstrates that FUS_{Maj-NT} contredicts the properties of Unanimity, Majority and Closure

On the Aggregation of Argumentation Frameworks

		[CDKLM07]		[TBS08]			
Properties		\triangle_{de}^{Σ}	∆ ^{leximax} de	QV	FUS _{All}	FUS _{All-NT}	FUS _{Maj-NT}
Anonymity	ANON	\checkmark	~	×	\checkmark	√	\checkmark
σ -weakly non-trivial	σ -WNT	×	×	√ ^{gr}	×	~	~
Unanimous Attack	UA	\checkmark	√	×	-	-	-
Majority Attack	MAJ-A	\checkmark	×	×	-	-	-
Attack Closure	AC	\checkmark	✓	\checkmark	-	-	-
Identity Attack	A-ID	\checkmark	√	×	-	-	-
σ -Identity	σ-ID	\checkmark	√	×	√ ^{gr}	×	×
ca_{σ} -Identity	ca_{σ} -ID	\checkmark	√	×	√ ^{gr}	×	×
sa_{σ} -Identity	sa_{σ} -ID	\checkmark	√	×	√ ^{gr}	×	×
Positive responsiveness	PR	\checkmark	√	\checkmark	-	-	-

 \checkmark^σ means that the property is satisfied for the semantic σ

- All the properties are satisfied by at least one operator
- No operator satisfies all the properties

On the Aggregation of Argumentation Frameworks

Conclusion

- Few of the properties are satisfied by existing aggregation operators
- Some of the properties (coming from social choice theory) seem to be too demanding in the general case

Future works

- Definition of other aggregation methods
- Translate the properties from propositional belief merging for argumentation systems

I am in my first year of PhD Thesis as part of the french project ANR AMANDE

 \ll Argumentation reasoning tools for online debate platforms \gg

- ► Elise Bonzon (LIPADE), Université Paris Descartes
- Sébastien Konieczny (CRIL), Université d'Artois
- ▶ Nicolas Maudet (LIP6), Université Pierre et Marie Curie, Paris

 \rightarrow We actually study the existing ranked-based semantics and their properties

- ► J. Leite and J. Martins, *Social abstract argumentation* (IJCAI'11), 2011
- P. Besnard and A. Hunter, A logic-based theory of deductive arguments, Artificial Intelligence, 2001
- L. Amgoud and J. Ben-Naim, Ranking-based semantics for argumentation frameworks, (SUM'13), 2013
- C. Cayrol and M. Lagasquie-Schiex, *Graduality in argumentation*, Journal of Artificial Intelligence Research, 2005
- P. Matt and F. Toni, A Game-Theoretic Measure of Argument Strength for Abstract Argumentation, (JELIA'08), 2008

